A Bayesian approach to modeling group and individual differences in multidimensional scaling

نویسندگان

  • Kensuke Okada
  • Michael D. Lee
چکیده

Multidimensional scaling (MDS) models of mental representation assume stimuli are represented by points in a low-dimensional space, such thatmore similar stimuli are represented by points closer to each other.We consider possible individual differences inMDS representations, using the recently proposed KINDSCALmodel,which allows for both sub-groups of peoplewith different representations, and individual differences in the attention people give to different stimulus dimensions. We develop a novel Bayesian implementation of the K-INDSCAL model, and demonstrate in a simulation study it is capable of inferring meaningful individual differences for the sorts of data sets typically available in psychology. We then apply the model to three existing data sets, involving the taste of colas, images of cats, and colors of different hues. Collectively, the results demonstrate the flexibility of the K-INDSCAL model in finding both groupand individual-level differences, and highlight the need for Bayesian methods to make these inferences. © 2015 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling individual differences in cognition.

Many evaluations of cognitive models rely on data that have been averaged or aggregated across all experimental subjects, and so fail to consider the possibility of important individual differences between subjects. Other evaluations are done at the single-subject level, and so fail to benefit from the reduction of noise that data averaging or aggregation potentially provides. To overcome these...

متن کامل

Investigating the Factors Affecting Multidimensional Poverty Using Linear Mixed Beta Regression Model

Multidimensional poverty is a complex issue that is affected by various factors. Therefore, accurate knowledge and its comprehensive definition are great important. The aim of this study was to investigate the effect of economic, social and institutional factors on multidimensional poverty based on a comprehensive measurement framework and using the beta linear mixed regression model, which is ...

متن کامل

Using Multidimensional Scaling for Assessment Economic Development of Regions

Addressing socio-economic development issues are strategic and most important for any country. Multidimensional statistical analysis methods, including comprehensive index assessment, have been successfully used to address this challenge, but they donchr('39')t cover all aspects of development, leaving some gap in the development of multidimensional metrics. The purpose of the study is to const...

متن کامل

Uncertainty Modeling of a Group Tourism Recommendation System Based on Pearson Similarity Criteria, Bayesian Network and Self-Organizing Map Clustering Algorithm

Group tourism is one of the most important tasks in tourist recommender systems. These systems, despite of the potential contradictions among the group's tastes, seek to provide joint suggestions to all members of the group, and propose recommendations that would allow the satisfaction of a group of users rather than individual user satisfaction. Another issue that has received less attention i...

متن کامل

Accuracy evaluation of different statistical and geostatistical censored data imputation approaches (Case study: Sari Gunay gold deposit)

Most of the geochemical datasets include missing data with different portions and this may cause a significant problem in geostatistical modeling or multivariate analysis of the data. Therefore, it is common to impute the missing data in most of geochemical studies. In this study, three approaches called half detection (HD), multiple imputation (MI), and the cosimulation based on Markov model 2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016